关于无穷这个词的意义

有人说:

数学家们不可能谈论由无限符号刻画的数学系统的存在性,那是幻觉:)由有限个符号(哪怕它包含无限符号)刻画的系统仍然是有限的。

问题在于语言,就出在“无限”这个名词上,假设我们换个名字,其实就会发现,它跟其他的符号没有任何区别。我们误以为包含“无限”这个符号的语言所描绘的那个假设的存在是无限的,但实际上根本不是。

我猜想,无限应该是人脑对一些序列进行归纳的产物。所谓实无穷潜无穷之争,无非是这个无穷符号的运算规则之争,如果扯到假设的那个无限存在之争,就永远扯不清了。

持这种观点的人显然没有弄清楚无穷这个术语的含义是怎么规定出来的。只要规定:『0是自然数,任何自然数的后继是自然数,0不是任何自然数的后继,任何两个不同自然数的后继也不同』那么任何满足这四条规定(连归纳公理都用不着)的集合的元素就一定无法一一映射到任何有限个元素的集合上,而任何有限集合却能够一一映射到该集合的某个子集上。这种性质当然可以不起名叫『无穷』,但无论如何这种性质不是任何有限集合所具有的,无论给这种性质起个什么名字,这种性质本身都是特殊的。纠缠于这种性质是否能够命名为『无穷』,纯属吃饱了撑的。