n-Sphere & n-Ball

Wiki: n-Sphere
S_{n}V_{n+1}的表面。以下讨论中n-Sphere和n-Ball的半径都是1,半径为R的情况乘以R^{n}即可。

n-Ball的体积公式:

    \[\displaystyle V_n = \frac{\pi^\frac{n}{2}}{\Gamma(\frac{n}{2} + 1)} = \frac{\pi^\frac{n}{2}}{\Pi(\frac{n}{2})}\]

偶数维体积公式:

    \[\displaystyle V_{2n} = \frac{\pi^n}{n!}\]

奇数维体积公式:

    \[\displaystyle V_{2n+1} = \frac{2^{n+1} \pi^n}{\left(2n+1\right)!!} = \frac{2^{2n+1} n! \pi^n}{\left(2n+1\right)!}\]

n-Sphere的面积公式:

    \[\displaystyle S_n = \frac{d\left(V_{n+1} R^{n+1}\right)}{dR} = (n+1)V_{n+1} = {2\pi^{(n+1)/2}\over\Gamma(\frac{n+1}{2})} = {2\pi^{(n+1)/2}\over\Pi(\frac{n-1}{2})}\]

偶数维面积公式:

    \[\displaystyle S_{2n} = \frac{2^{n+1} \pi^n}{\left(2n-1\right)!!} = \frac{2^{2n+1} n! \pi^n}{\left(2n\right)!}\]

奇数维面积公式:

    \[\displaystyle S_{2n+1} = \frac{2\pi^{n+1}}{n!}\]

递推公式:

    \[\displaystyle S_{n+1}= \frac{2 \pi}{n} S_{n-1}; \; S_0 = 2, S_1 = 2 \pi\]

    \[\displaystyle V_{n} = \frac{2 \pi}{n} V_{n-2}; \; V_0 = 1, V_1 = 2\]

    \[S_{n+1} = \sqrt{\pi}\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2} + 1)} S_{n} = \sqrt{\pi}\frac{\Pi(\frac{n-1}{2})}{\Pi(\frac{n}{2})} S_{n};\]

    \[S_{2n+1} = \pi \frac{(2n-1)!!}{2^n n!} S_{2n}, \;\; S_{2n} = \frac{2^n (n-1)!}{(2n-1)!!} S_{2n-1}\]

    \[V_{n} = \sqrt{\pi}\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2} + 1)} V_{n-1} = \sqrt{\pi}\frac{\Pi(\frac{n-1}{2})}{\Pi(\frac{n}{2})} V_{n-1};\]

    \[V_{2n} = \pi \frac{(2n-1)!!}{2^n n!} V_{2n-1}, \;\; V_{2n-1} = \frac{2^n (n-1)!}{(2n-1)!!} V_{2n-2}\]

递推公式的推导(思路是将单位n-Ball分成无数个同轴薄圆柱面,每个圆柱面半径为r,厚度为dr,母线是(n-2)-Ball,该(n-2)-Ball的半径为\sqrt{1-r^2}):

    \[\begin{array}{ll} V_n &\displaystyle = \int_{0}^{1} \int_{0}^{2\pi} V_{n-2}\left(\sqrt{1-r^2}\right)^{n-2} \, r \, d\theta \, dr \\ &\displaystyle = \int_{0}^{1} \int_{0}^{2\pi} V_{n-2} (1-r^2)^{\tfrac{n}{2}-1}\, r \, d\theta \, dr \\ &\displaystyle = 2 \pi V_{n-2} \int_{0}^{1} (1-r^2)^{n/2-1}\, r \, dr \\ &\displaystyle = 2 \pi V_{n-2} \left[ -\frac{1}{n}(1-r^2)^{n/2} \right]^{r=1}_{r=0} \\ &\displaystyle = 2 \pi V_{n-2} \frac{1}{n} = \frac{2 \pi}{n} V_{n-2}. \end{array}\]

关系:

    \[\displaystyle V_n/S_{n-1} = 1/n\]

    \[\displaystyle S_{n+1}/V_n = 2\pi\]

一个很有趣的现象是,当n趋于无穷大的时候,单位n-Ball的体积数值随着n增大趋于0:

    \[\displaystyle \lim_{n\rightarrow\infty} V_n = 0\]

这件事有点反直觉,因为感觉上单位n-Ball里面应该总是能够塞进去一个单位n-Cube,但事实上这只是我们在低维空间中总结出来的错误规律。单位n-Ball的直径永远是2,而单位n-Cube的对角线长却是\sqrt{n}。n<4时单位n-Cube对角线长小于n-Ball直径,n=4时单位n-Cube对角线长等于n-Ball直径,n>4时单位n-Cube对角线长大于n-Ball直径,而且随着n增大会大得越来越多。也就是说在足够高维的空间中,单位n-Ball里面根本就无法塞入一个单位n-Cube。当然,一个单位nCube里面也不可能完全塞入一个n-Sphere,毕竟单位n-Cube两个相对表面之间的最小距离只有1,而单位n-Sphere直径却是2。

\Gamma函数的性质:

    \[\Gamma(z) \equiv \int_{0}^{\infty} t^{z-1} e^{-t} dt, \;\;\;\;  \Pi(z) \equiv \int_{0}^{\infty} t^{z} e^{-t} dt\]

    \[\overline{\Gamma(z)} = \Gamma(\overline{z}) \; \Rightarrow \; \Gamma(z)\Gamma(\overline{z}) \in \mathbf{R}\]

    \[\Gamma(z+1) = z \Gamma(z); \;\; \Gamma(n+1) = n \Gamma(n) = n!\]

    \[\Pi(z) = z \Pi(z-1); \;\; \Pi(n) = n \Pi(n-1) = n!\]

    \[\Gamma\left(n+\tfrac{1}{2}\right) = \Gamma\left(\frac{2n+1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}; \;\; \Gamma\left(\tfrac{1}{2}\right) = \sqrt{\pi}\]

    \[\Pi\left(n-\tfrac{1}{2}\right) = \Pi\left(\frac{2n-1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}; \;\; \Pi\left(\tfrac{1}{2}\right) = \sqrt{\pi}\]

    \[\Gamma(z) \Gamma\left(z + \tfrac{1}{2}\right) = 2^{1-2z} \; \sqrt{\pi} \; \Gamma(2z)\]

    \[\Pi\left(z-\tfrac{1}{2}\right) \Pi(z) = 2^{-2z} \; \sqrt{\pi} \; \Pi(2z)\]

    \[\Gamma(1-z)\Gamma(z) = \frac{\pi}{\sin{\pi z}}\]

    \[\Pi(-z)\Pi(z-1) = \frac{\pi}{\sin{\pi z}}, \;\;\;\; \Pi(1-z)\Pi(z) = \frac{-\pi}{\sin{\pi z}}\]

    \[\prod_{k=0}^{m-1}\Gamma\left(z + \frac{k}{m}\right) = (2 \pi)^{\frac{m-1}{2}} \; m^{1/2 - mz} \; \Gamma(mz)\]

    \[\prod_{k=0}^{m-1}\Pi\left(z + \frac{k}{m}\right) = (2 \pi)^{\frac{m-1}{2}} \; m^{-(mz+1/2)} \; \Pi(mz)\]